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Abstract
The non-conformal analogue of Abelian T-duality transformations relating
pairs of axial and vector integrable models from the non-Abelian affine Toda
family is constructed and studied in detail.

PACS numbers: 11.25.Hf, 02.30.Ik, 11.10.Lm

1. Introduction

Abelian T-duality in U(1)⊗s invariant 2D conformal field theories (CFTs) and in string theory
represents a set of specific canonical transformations that relate pairs of equivalent models
sharing the same spectrum, but with different σ -model-like Lagrangians [1, 2]. The axial and
vector gauged G/H -WZW models provide a vast variety of examples of such pairs of T-dual
models [3, 4]. On the other hand, the integrable perturbations of these G/H -WZW models
have been identified with the family of the so-called non-Abelian affine Toda theories [5–7].
An important feature of these integrable models (IMs) is their U(1)⊗k, k � s, global symmetry
and the fact that they admit both topological and/or non-topological soliton solutions carrying
U(1)⊗k charges as well [7, 8]. Hence, an interesting problem to be addressed is about the
T-duality of pairs of axial and vector IMs within this family. More precisely, whether the
perturbation breaks a part (or all) of the isometries (i.e. U(1)⊗sCFT to U(1)⊗sIm , sIm � sCFT) and
whether certain non-conformal analogues of the Abelian T-duality transformations take place.
The simplest example of a pair of T-dual IMs with only one isometry (i.e. sIm = 1) has been
studied in detail in our recent paper [7, 9]. As one expects, the mass spectrum of the solitons
is indeed invariant under the corresponding non-critical T-duality, but the U(1)-charges of
the solitons of the axial model are mapped into the topological charges of the solitons of the
vector IM and vice versa. An interesting example of T-self-dual IMs is given by the complex
sine-Gordon [6] and the Fateev IMs [10].

The present paper is devoted to the investigation of T-duality properties of the family
of IMs representing relativistic IM belonging to the same hierarchy as the Fordy–Kulish
(multi-component) nonlinear Schrödinger model (NLS) [11, 12]. They can be considered as a
specific Hamiltonian reduction of the A(1)

n -homogeneous sine-Gordon models [13]. Their main
property is the large global symmetry group SL(N)⊗U(1), i.e. they admit N-isometries, as in
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the SL(N + 1)/SL(N)⊗U(1)-WZW model. As a consequence the T-duality transformations
relating the corresponding axial and vector IMs of this family are indeed more involved.

The paper is organized as follows. Section 2 contains a brief summary of the general
formalism for the construction of the effective action of a large class of NA-affine Toda theories.
In section 3, we apply these methods for the derivation of the Lagrangians of axial and vector
IMs of reduced homogeneous SG-type. Section 4 is devoted to the symmetries of such models
while in section 5 we explicitly construct the corresponding T-duality transformations.

2. NA affine Toda models as gauged two-loop WZW models

The basic ingredient in constructing massive Toda models is the decomposition of an affine
Lie algebra G in terms of graded subspaces defined according to a grading operator Q,

[Q,Gl] = lGl G = ⊕Gl [Gl ,Gk] ⊂ Gl+k, l, k = 0,±1, . . . . (2.1)

In particular, the zero grade subspace G0 plays an important role since it is parametrized by
the Toda fields. The grading operator Q induces the notion of negative (G<) and positive (G>)

grade subalgebras and henceforth the decomposition of a group element in the Gauss form,

g = NBM (2.2)

where N = exp(G<), B = exp(G0) and M = exp(G>).
The action of the corresponding affine Toda models can be derived from the gauged

two-loop1 Wess–Zumino–Witten (WZW) action [15, 7],

SG/H (g,A, Ā) = SWZW(g) − k

2π

∫
d2x Tr(A(∂̄gg−1 − ε+) + Ā(g−1∂g − ε−) + AgĀg−1)

(2.3)

where A = A− ∈ G<, Ā = Ā+ ∈ G> and ε± are constant elements of grade ±1. The action
(2.3) is invariant under

g′ = α−gα+ A′ = α−Aα−1
− + α−∂α−1

− Ā′ = α−1
+ Āα+ + ∂̄α−1

+ α+ (2.4)

where α− ∈ G<, α+ ∈ G>. It therefore follows that SG/H (g,A, Ā) = SG/H (B,A′, Ā′).
Integrating over the auxiliary fields A and Ā in the partition function

Z =
∫

DADĀDB e−S (2.5)

we find the effective action for an integrable model defined on the group G0,

Seff(B) = SWZW(B) − k

2π

∫
Tr(ε+Bε−B−1) d2x. (2.6)

The corresponding equations of motion have the following compact form [16]:

∂̄(B−1∂B) + [ε−, B−1ε+B] = 0 ∂(∂̄BB−1) − [ε+, Bε−B−1] = 0. (2.7)

It is straightforward to derive from equations (2.7) the chiral conserved currents associated
with the subalgebra G0

0 ⊂ G0 defined as G0
0 = {X ∈ G0, such that [X, ε±] = 0}, i.e.

JX = Tr(XB−1∂B) J̄ X = Tr(X∂̄BB−1) ∂̄JX = ∂J̄ X = 0. (2.8)

The conservation of such currents is a consequence of the invariance of the action (2.6) under
the G0

0 ⊗ G0
0 chiral transformation,

B ′ = �̄(z̄)B�(z) (2.9)

where �̄(z̄),�(z) ∈ G0
0.

1 The Ĝ-WZW model in the case where Ĝ is an affine Kac–Moody algebra is called the two-loop WZW model [14].
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The fact that the currents JX and J̄ X in (2.8) are chiral, allows further reduction of the IM
(2.6) by imposing a set of subsidiary constraints,

JX = Tr(XB−1∂B) = 0 J̄ X = Tr(X∂̄BB−1) = 0 X ∈ G0
0 (2.10)

which reduces the model defined on the group G0 to the one on coset G0
/
G0

0. Such constraints
are incorporated into the action by repeating the gauged WZW action argument for the
subgroup G0. For a general non-Abelian G0

0 we define a second grading structure Q′ which
decomposes G0

0 into positive, zero and negative graded subspaces, i.e. G0
0 = G0,<

0 ⊕G0,0
0 ⊕G0,>

0 .
Following the same principle as in [15, 7, 8] we seek for an action invariant under

B ′′ = γ0(z̄, z)γ−(z̄, z)Bγ+(z̄, z)γ
′
0(z̄, z) γ0, γ

′
0 ∈ G

0,0
0 γ− ∈ G

0,<
0 γ+ ∈ G

0,>
0 (2.11)

and choose γ0(z̄, z), γ
′
0(z̄, z), γ−(z̄, z), γ+(z̄, z) ∈ G0

0 such that B ′′ = γ0γ−Bγ+γ
′
0 = g

f

0 ∈
G0

/
G0

0 since B can also be decomposed into the Gauss form according to the second grading
structure Q′. Denote �− = γ0γ− and �+ = γ+γ

′
0. Then the action

S(B,A(0), Ā(0)) = SWZW(B) − k

2π

∫
Tr(ε+Bε−B−1) d2x − k

2π

∫
Tr

(
ηA(0)∂̄BB−1

+ Ā(0)B−1∂B + ηA(0)BĀ(0)B−1 + A
(0)
0 Ā

(0)
0

)
d2x (2.12)

(with η = +1,−1 correspond to γ ′
0 = γ0 for axial or γ ′

0 = γ −1
0 for vector gaugings2

respectively, A(0) = A
(0)
0 + A

(0)
− and Ā(0) = Ā

(0)
0 + Ā

(0)
+ ), is invariant under �± transformations

B ′ = �−B�+ A′0
0 = A

(0)
0 − ηγ −1

0 ∂γ0 Ā′0
0 = Ā

(0)
0 − γ −1

0 ∂̄γ0

A′(0) = �−A(0)�−1
− − η∂�−�−1

− Ā′(0) = �−1
+ Ā(0)�+ − �−1

+ ∂̄�+

(2.13)

where A
(0)
0 , Ā

(0)
0 ∈ G0,0

0 , A
(0)
− ∈ G0,<

0 , Ā
(0)
+ ∈ G0,>

0 . Hence we have

S(B,A(0), Ā(0)) = S
(
g

f

0 , A′(0)
, Ā′(0))

. (2.14)

The general construction above provides a systematic classification of relativistic
integrable models in terms of its algebraic structure, i.e.

{
G,Q, ε±,G0

0

}
. For example, within

the affine G = ˆSL(N + 1) algebra we have the following families of integrable models:

(1) G0
0 = ∅ characterizes the choices of

Q = (N + 1)d +
N∑

l=1

λl · H G0 = U(1)N = {h1, . . . , hN }

ε± = µ

(
N∑

l=1

E
(0)
±αl

+ E
(±1)

∓(α1+···+αN )

)

which gives rise to the well-known Abelian affine Toda model (see for instance [17, 16]).
(2)

(a) G0
0 = U(1) = {λ1 · H }

Q = Nd +
N∑

l=2

λl · H G0 = SL(2) ⊗ U(1)N−1 = {
E±α1 , h1, . . . , hN

}

ε± = µ

(
N∑

l=2

E
(0)
±αl

+ E
(±1)

∓(α2+···+αN )

)

corresponds to the simplest non-Abelian affine Toda model of dyonic type, admitting
electrically charged topological solitons (see for instance [7, 15]).

2 Note that for non-Abelian G0
0 the invariance of the vector action in (2.12) is a consequence of the Borel structure

of the subgroup elements �±, i.e. we consider the left–right coset �−\G/�+.
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(b) G0
0 = U(1) ⊗ U(1) = {λ1 · H, λN · H }

Q = (n − 1)d +
N−1∑
l=2

λl · H ε± = µ

(
N−1∑
l=2

E
(0)
±αl

+ E
(±1)

∓(α2+···+αN−1)

)

G0 = SL(2) ⊗ SL(2) ⊗ U(1)N−2 = {
E±α1 , E±αN

, h1, . . . , hN

}
is of the same class of U(1)⊗k dyonic type IMs, but now yielding multicharged
solitons ([8]).

(3) G0
0 = SL(2) ⊗ U(1) = {

E±α1 , λ1 · H, λ2 · H
}

Q = (N − 1)d +
N∑

l=3

λl · H ε± = µ

(
N∑

l=3

E
(0)
±αl

+ E
(±1)

∓(α3+···+αN )

)

G0 = SL(3) ⊗ U(1)N−2 = {
E±α1 , E±α2 , E±(α1+α2), h1, . . . , hN

}
and Q′ = λ1 · H , such that G0,<

0 = {
E−α1

}
,G0,>

0 = {
Eα1

}
,G0,0

0 = {λ1 · H, λ2 · H } leads
to dyonic models with non-Abelian global symmetries (see section 6 of [8]).

The classical integrability of all these models follows from their zero curvature (Lax)
representation:

∂Ā − ∂̄A − [A, Ā] = x0 A, Ā ∈ ⊕i=0,±1Gi (2.15)

with

A = −Bε−B−1 Ā = ε+ + ∂̄BB−1 (2.16)

where the constraints (2.10) are imposed. It can be easily verified that substituting (2.16) into
(2.15) taking into account (2.10), one reproduces the equations of motion (2.7). Then the
existence of an infinite set (of commuting) conserved charges Pm,m = 0, 1, . . . is a simple
consequence of equation (2.15), namely,

Pm(t) = Tr(T (t))m ∂tPm = 0 T (t) = lim
L→∞

P exp
∫ L

−L

Ax(t, x) dx.

Hence the above-described procedure for derivation of the Abelian and NA affine Toda models
as gauged G/H two-loop WZW models leads to integrable models by construction.

3. Homogeneous gradation and the Lund–Regge type models

An interesting class of integrable models, that generalizes the Lund–Regge model [18], can be
constructed from the affine Kac–Moody algebra Ĝ = ˆSL(N + 1) endowed with homogeneous
gradation Q = d and the specific choice of ε± = µλN ·H(±1), where λN is the Nth fundamental
weight of SL(N + 1). The zero grade subalgebra G0 corresponds to the finite-dimensional Lie
algebra G0 = SL(N + 1) and G0

0 = SL(N) ⊗ U(1). Let us parametrize the auxiliary gauge
fields as follows:

A
(0)
0 =

N∑
i=1

ai(λi − λi−1) · H(0) Ā
(0)
0 =

N∑
i=1

āi (λi − λi−1) · H(0) λ0 = 0

A
(0)
− =

N−1∑
j=1

N−1∑
i=j

ai+1,jE
(0)

−(αj +···+αi)
Ā(0)

+ =
N−1∑
j=1

N−1∑
i=j

āj,i+1E
(0)
αj +···+αi

(3.17)

where aij (x, t), ai(x, t), āij (x, t), āi(x, t) are arbitrary functions of spacetime variables. We
next consider two different gauge fixings of G0

0 , the vector and the axial, in order to derive the
effective Lagrangians for the pair of T-dual IMs.



T-duality in 2D integrable models 4633

3.1. Axial gauging

According to the axial gauging (2.11), η = 1, γ ′
0 = γ0, the factor group element g

f

0 ∈ G0
/
G0

0
is parametrized as follows:

g
f

0 = g
f

0,ax = nm n = exp

(
N∑

i=1

χiE−(αi+···+αN )

)
m = exp

(
N∑

i=1

ψiEαi+···+αN

)
.

(3.18)

After a tedious but straightforward calculation we find

Tr
(
A

(0)
0 Ā

(0)
0 + A(0)g

f

0 Ā(0)g
f −1
0 + A(0)∂̄g

f

0 g
f −1
0 + Ā(0)g

f −1
0 ∂g

f

0

)
= āiMijaj + āiNi + N̄ iai +

N−1∑
j=1

N−1∑
i=j

N−1∑
k=j

āj,i+1ak+1,j (δi,k + ψi+1χk+1)

−
N−1∑
j=1

N−1∑
i=j

āj,i+1ψi+1∂χj −
N−1∑
j=1

N−1∑
i=j

ai+1,jχi+1∂̄ψj (3.19)

where we have introduced Mij and Nj, N̄j as

Mi,j = 2(λi − λi−1) · (λj − λj−1) + ψiχiδi,j i, j = 1, . . . , N λ0 = 0

Nj =

N−1∑

i=j

ai+1,jχi+1 − ∂χj


 ψj N̄j =


N−1∑

i=j

āj,i+1ψi+1 − ∂̄ψj


 χj .

(3.20)

In order to derive the effective Lagrangian of the axial model we have to integrate the auxiliary
fields a1, āi , aj,i+1 and āi+1,j . We shall consider the particular case N = 2, i.e. G = ˆSL(3),
where the Gaussian matrix integration is quite simple. Then, in the parametrization (3.18)

B = eχ̃1E−α1 eχ̃2E−α2 +χ̃3E−α1−α2 eφ1h1+φ2h2 eψ̃2Eα2 +ψ̃3Eα1+α2 eψ̃1Eα1

= eχ̃1E−α1 e
1
2 (λ1·HR1+λ2·HR2)

(
g

f

0,ax

)
e

1
2 (λ1·HR1+λ2·HR2) eψ̃1Eα1

g
f

0,ax = eχ1E−α1−α2 +χ2E−α2 eψ1Eα1+α2 +ψ2Eα2

φ1h1 + φ2h2 = λ1 · HR1 + λ2 · HR2

(3.21)

we have Mij ,Nj N̄j , i, j = 1, 2 in the form

M =
(

4
3 + ψ1χ1 − 2

3

− 2
3

4
3 + ψ2χ2

)
(3.22)

and

N̄ = (−(∂̄ψ1 − ā1,2ψ2)χ1,−(χ2∂̄ψ2)) N =
(−(∂χ1 − a2,1χ2)ψ1

−(ψ1∂χ1)

)
. (3.23)

Integrating first over the ai and āi and next on the a12, ā21 we derive the effective action of
the SL(3) axial model

Sax = − k

2π

∫
dz dz̄

(
1

�

(
∂̄ψ2∂χ2(1 + ψ1χ1 + ψ2χ2) + ∂̄ψ1∂χ1(1 + ψ2χ2)

− 1

2
(ψ2χ1∂̄ψ1∂χ2 + χ2ψ1∂̄ψ2∂χ1)

)
− V

)
(3.24)

where V = µ2
(

2
3 + ψ1χ1 + ψ2χ2

)
and � = (1 + ψ2χ2)

2 + ψ1χ1
(
1 + 3

4ψ2χ2
)
.
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3.2. Vector gauging

For the explicit SL(3) case, the zero grade group element B is written according to the vector
gauging

(
η = −1, γ ′

0 = γ −1
0

)
as

B = eχ̃1E−α1 eχ̃2E−α2 +χ̃3E−α1−α2 eφ1h1+φ2h2 eψ̃2Eα2 +ψ̃3Eα1+α2 eψ̃1Eα1

= eχ̃1E−α1 e
1
2 (λ1·Hu1+λ2·Hu2)

(
g

f

0,vec

)
e− 1

2 (λ1·Hu1+λ2·Hu2) eψ̃1Eα1 (3.25)

where g
f

0,vec = e−t2E−α2 −t1E−α1−α2 eφ1h1+φ2h2 et2Eα2 +t1Eα1+α2 . We next choose u1, u2 such that

χ̃2 e− 1
2 u2 = −t2 ψ̃2 e

1
2 u2 = t2

χ̃3 e− 1
2 (u1+u2) = −t1 ψ̃3 e

1
2 (u1+u2) = t1.

Taking into account the parametrization (3.17) for SL(3) we find

Tr
(
A

(0)
0 Ā

(0)
0 − A

(0)
0 g

f

0,vecĀ
(0)
0 g

f −1
0,vec + Ā

(0)
0 g

f −1
0,vec∂g

f

0,vec − A
(0)
0 ∂̄g

f

0,vecg
f −1
0,vec

)
= a1ā1�̄ + ā1(a01t1t2 + t2∂t1) eφ1+φ2 + a1(ā01t1t2 − t2∂̄ t1) eφ1+φ2 + a01ā01t

2
1 eφ1+φ2

+ a02ā02t
2
2 e2φ2−φ1 + ā01(∂φ1 + t1∂t1 eφ1+φ2) + ā02(∂φ2 − ∂φ1 + t2∂t2 e−φ1+2φ2)

− a01(∂̄φ1 + t1∂̄ t1 eφ1+φ2) − a02(∂̄φ2 − ∂̄φ1 + t2∂̄ t2 e−φ1+2φ2) (3.26)

where �̄ = t2
2 eφ1+φ2 −e2φ1−φ2 . We first take the integral over a1 and ā1 in the partition function

(2.5) with the action given by (2.12). As a result we get

Lint = ā0iMij a0j + ā0iNi + N̄ ia0i +
t2
2 ∂t1∂̄ t1

�̄
e2(φ1+φ2) (3.27)

where

M11 = − t2
1

�̄
e3φ1 M22 = t2

2 e2φ2−φ1 M12 = M21 = 0 (3.28)

and

N1 = ∂φ1 + t1∂t1 eφ1+φ2 − t1t
2
2 ∂t1

�̄
e2(φ1+φ2) N2 = ∂φ2 − ∂φ1 + t2∂t2 e−φ1+2φ2

N̄1 = −∂̄φ1 − t1∂̄ t1 eφ1+φ2 +
t1t

2
2 ∂̄ t1

�̄
e2(φ1+φ2) N̄2 = −∂̄φ2 + ∂̄φ1 − t2∂̄ t2 e−φ1+2φ2 .

(3.29)

We next integrate the fields ā0i and a0i , i = 1, 2 in equation (3.27). Together with the standard
form of WZW action SWZW

(
g

f

0,vec

)
we arrive at the following effective Lagrangian for the

vector IM:

Lvec = 1

2

2∑
i=1

ηij ∂φi ∂̄φj +
∂φ1∂̄φ1

t2
1

e−φ1−φ2 + ∂̄φ1∂ ln(t1) + ∂φ1∂̄ ln(t1)

− ∂φ1∂̄φ1

(
t2

t1

)2

e−2φ1+φ2 +
∂̄(φ2 − φ1)∂(φ2 − φ1)

t2
2

eφ1−2φ2

+ ∂̄(φ2 − φ1)∂ ln(t2) + ∂(φ2 − φ1)∂̄ ln(t2) − V (3.30)

where V = µ2
(

2
3 − t2

2 e−φ1+2φ2 − t2
1 eφ1+φ2

)
and ηij = 2δij − δi,j−1 − δi,j+1. The integrability

of the axial (3.24) and vector (3.30) models is a consequence of the Lax representation (2.15)
and (2.16) valid for both models.
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4. Local and global symmetries

Before imposing the subsidiary constraints (2.10), the model on the group G0 described by
(2.6) is invariant under chiral transformation (2.9) generated by G0

0 ⊗ G0
0. For the explicit

SL(3) case, the associated Noether currents are given in terms of the axial variables defined
in (3.21) as

J−α1 = ∂ψ̃1 − ψ̃2
1∂χ̃1 eR1 + ∂χ̃2(ψ̃1ψ̃2 − ψ̃3) eR2

+ (∂χ̃3 − χ̃2∂χ̃1)(ψ̃1ψ̃2 − ψ̃3)ψ̃1 eR1+R2 + ψ̃1∂R1

Jα1 = ∂χ̃1 eR1 − ψ̃2(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

Jλ1·H = 1
3 (2∂R1 + ∂R2) − ψ̃1∂χ̃1 eR1 + (ψ̃1ψ̃2 − ψ̃3)(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

Jλ2·H = 1
3 (∂R1 + 2∂R2) − ψ̃2∂χ̃2 eR2 − ψ̃3(∂χ̃3 − χ̃2∂χ̃1) eR1+R2

J̄ α1 = ∂̄ χ̃1 − χ̃2
1 ∂̄ψ̃1 eR1 + ∂̄ψ̃2(χ̃1χ̃2 − χ̃3) eR2

+ (∂̄ψ̃3 − ψ̃2∂̄ψ̃1)(χ̃1χ̃2 − χ̃3)χ̃1 eR1+R2 + χ̃1∂R1

J̄−α1 = ∂̄ψ̃1 eR1 − χ̃2(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

J̄ λ1·H = 1
3 (2∂̄R1 + ∂̄R2) − χ̃1∂̄ψ̃1 eR1 + (χ̃1χ̃2 − χ̃3)(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

J̄ λ2·H = 1
3 (∂̄R1 + 2∂̄R2) − χ̃2∂̄ψ̃2 eR2 − χ̃3(∂̄ψ̃3 − ψ̃2∂̄ψ̃1) eR1+R2

(4.31)

where ∂̄J = ∂J̄ = 0 and J = Jλ1·H h1 + Jλ2·H h2 +
∑

α JαE−α + J−αEα, α = α1, α2, α1 + α2.
Apart from those Noether currents (4.31) note the existence of topological currents

jϕ,µ = εµν∂νϕ ϕ = {Ri, i = 1, 2, χ̃j , ψ̃j , j = 1, 2, 3}. (4.32)

The reduction from the group G0 to the coset G0
/
G0

0 implies the vanishing of currents (4.31),
which defines the unphysical non-local fields Ri in terms of ψi, χi :

∂R1 = ψ1∂χ1

�

(
1 +

3

2
ψ2χ2

)
− ψ2∂χ2

�

(
�2 +

3

2
ψ1χ1

)

∂R2 = ψ1∂χ1

�
+

ψ2∂χ2

�

(
2�2 +

3

2
ψ1χ1

)

∂̄R1 = χ1∂̄ψ1

�

(
1 +

3

2
ψ2χ2

)
− χ2∂̄ψ2

�

(
�2 +

3

2
ψ1χ1

)

∂̄R2 = χ1∂̄ψ1

�
+

χ2∂̄ψ2

�

(
2�2 +

3

2
ψ1χ1

)
(4.33)

where � = (1 + ψ2χ2)
2 + ψ1χ1

(
1 + 3

4ψ2χ2
)
,�2 = 1 + ψ2χ2 and

χ̃1 = χ3 e− 1
2 R1 ψ̃1 = ψ3 e− 1

2 R1 χ̃2 = χ2 e− 1
2 R2 ψ̃2 = ψ2 e− 1

2 R2

χ̃3 = χ1 e− 1
2 (R1+R2) ψ̃3 = ψ1 e− 1

2 (R1+R2).
(4.34)

In addition we find

∂χ̃1 = ψ2

�

(
∂χ1�2 − 1

2
χ1ψ2∂χ2

)
e− 1

2 R1

∂ψ̃1 = ψ1

�

(
∂χ2(1 + ψ1χ1 + ψ2χ2) − 1

2
χ2ψ1∂χ1

)
e− 1

2 R1

∂̄ψ̃1 = χ2

�

(
∂̄ψ1�2 − 1

2
ψ1χ2∂̄ψ2

)
e− 1

2 R1

∂̄ χ̃1 = χ1

�

(
∂̄ψ2(1 + ψ1χ1 + ψ2χ2) − 1

2
χ1ψ2∂̄ψ1

)
e− 1

2 R1 .

(4.35)
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Using the equations of motion derived from (3.24), we prove the following conservation laws3:

∂̄j = ∂j̄ j = jψ̃1
, jχ̃1 j = jRi

i = 1, 2 (4.36)

where j = 1
2 (j0 + j1), j̄ = 1

2 (j0 − j1) and

jRi ,µ = εµν∂νRi i = 1, 2 jψ̃1,µ
= εµν∂νψ̃1 jχ̃1,µ = εµν∂νχ̃1. (4.37)

Under the reduction (2.10), the topological currents (4.32) in the group G0 become Noether
currents (4.37) in the coset G0

/
G0

0 and their conservation is a consequence of the invariance
of action (3.24) under the following non-local global transformations:

δψ1 = 1
2 (−ε1 − ε2 + ε̄1 + ε̄2)ψ1 − 1

2ε−ψ1ψ̃1 + ε̄+
(
ψ2 e− 1

2 R1 + 1
2ψ1χ̃1

)
δχ1 = 1

2 (ε1 + ε2 − ε̄1 − ε̄2)χ1 − 1
2 ε̄+χ1χ̃1 + ε−

(
χ2 e− 1

2 R1 + 1
2χ1ψ̃1

)
δψ2 = ε−

(
1
2ψ2ψ̃1 − ψ1 e− 1

2 R1
) − 1

2 ε̄+ψ2χ̃1 + 1
2 (−ε2 + ε̄2)ψ2

δχ2 = ε̄+
(

1
2χ2χ̃1 − χ1 e− 1

2 R1
) − 1

2ε−χ2ψ̃1 + 1
2 (ε2 − ε̄2)χ2

(4.38)

where ε1 − ε̄1, ε2 − ε̄2, ε− and ε̄+ are arbitrary constants. The algebra of such transformations
can be shown to be the q-deformed Poisson bracket algebra SL(2)q ⊗ U(1) [19], with
q = exp

(− 2π
k

)
. The global symmetries of the vector model generate the same algebra.

5. Non-conformal T-duality

T-duality in the context of the conformal σ -models

Sconf
σ = 1

4πα′

∫
d2z

(
(gMN(X)ηµν + εµνbMN(X))∂µXM∂νX

N +
α′

2
R(2)ϕ(X)

)
(5.39)

(µ, ν = 0, 1,M,N = 1, 2, . . . D and R(2) is the worldsheet curvature), represents specific
canonical transformations (CT):

(
�XM

,XM
) → (

�X̃M
, X̃M

)
that map (5.39) into its dual

σ -model Sconf
σ (GM,N(X̃), BM,N(X̃), φ(X̃)). In the case of curved backgrounds with

d-isometric directions (i.e. the metric gMN(Xm), the antisymmetric tensor bMN(Xm) and the
dilaton ϕ(Xm) are independent of the d � D fields Xα(z, z̄), α = 1, 2, . . . d) the corresponding
CT has the form:

�X̃α
= −2∂xXα �Xα

= −2∂xX̃α (5.40)

and the other �Xm
and Xm,m = d + 1, . . . D remain unchanged. Then T-duality manifests

as (matrix) transformations of the target-space geometry data of (5.39): eMN(X) =
bMN(X) + gMN(X) and ϕ(X) to its T-dual EMN(X̃) = BMN(X̃) + GMN(X̃) and φ(X̃) [20]:

Eαβ = (e−1)αβ Emn = emn − emα(e−1)αβeβn

Eαm = (e−1)βαeβm Emα = −emβ(e−1)βα φ = ϕ − ln(det eαβ).
(5.41)

By construction the dual pair of σ -models Sconf
σ (e, ϕ) and S̃conf

σ (E, φ) share the same spectra
and partition functions. Their Lagrangians are related by the generating function F [1]

L(e, ϕ) = L(E, φ) +
dF
dt

F = 1

8πα′

∫
dx(X · ∂xX̃ − ∂xX · X̃). (5.42)

An important feature of the Abelian T-duality (5.40) and (5.41) is that it maps the
U(1)⊗d Noether charges Qα = ∫ ∞

−∞ J α
o dx of Sconf

σ (e, ϕ) into the topological charges

3 Note that (4.35) denotes non-local fields R1, R2, ψ̃1, χ̃1 in terms of the physical fields ψ1, ψ2, χ1 and χ2 and hence
conservation of (4.37) is non-trivial.
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Q̃α
top = ∫ ∞

−∞ ∂xX̃
α dx of its T-dual model S̃conf

σ (E, φ) and vice versa, i.e. we have

J α
µ = eαβ(Xn)∂µXβ + eαm(Xn)∂µXm = εµν∂

νX̃α

J̃ α
µ = Eαβ(X̃n)∂µX̃β + Eαm(X̃n)∂µX̃m = εµν∂

νXα
(5.43)

and therefore

T :
(
Qα,Qα

top

) → (
Q̃α

top, Q̃
α
)
.

Different examples of such T-dual pairs of conformal σ -models have been constructed in terms
of axial and vector gauged G/H -WZW models (see [4] and references therein).

On the other hand, the IMs considered in sections 2 and 3 have as their conformal
limits (µ = 0, i.e. V = 0 in (3.24) and (3.30)) the corresponding axial and vector gauged
SL(3, R)/SL(2, R)⊗U(1)-WZW models which are T-dual by construction. They have d = 2
isometric directions, i.e. eMN(ψi, χi) are independent of �i = ln

(
ψi

χi

)
. The T-duality group

in this case is known to be O(2, 2|Z) (see for instance [2]). The problem we address in this
section is about T-duality of the IMs (3.24) and (3.30). We first note the important property
of these IMs, namely adding the potentials V = Tr

(
ε+g

f

0 ε−
(
g

f

0

)−1)
breaks the conformal

symmetry, but one still keeps two isometries, i.e., U(1) ⊗ U(1) invariance, say �i → �i + αi

in the axial case. This suggests that the T-duality of the conformal G/H -WZW models can
be extended to T-duality for their integrable perturbations (3.24) and (3.30). In order to prove
it we extend the Buscher procedure [20] of deriving the T-dual of a given conformal σ -model
(with d isometries) to the case of IMs, i.e. in the presence of the potential V (Xn).

5.1. Isometries and T-dual actions

Let us consider the Lagrangian density of the form

Lax
IM = Lconf

σ (�α,Xm) − V (Xm) (5.44)

where Lconf
σ is the Lagrangian (5.39) with Xα = �α and the potential V (Xm) is independent

of �α . We next rewrite (5.39) in a symbolic form separating the isometric fields �α, α =
1, 2, . . . d from the remaining ones Xm,m = d + 1, . . . D:

Lax
IM = ∂̄�αeαβ(Xm)∂�β + ∂̄�αNα + N̄α∂�α + L′(Xm). (5.45)

In order to derive Lvec
IM (�̃α, X̃m) of the T-dual IM we apply equation (5.42), i.e.

Lvec
IM (�̃α, X̃m) = Lax

IM(�α,Xm) − �̃α(∂P̄α − ∂̄Pα) (5.46)

where we denote Pα = ∂�α, P̄α = ∂̄�α and the second term is nothing but the contribution
of the generating function F(�α, �̃α) ∼ εµν∂µ�α∂ν�̃

α . We first integrate (5.46) by parts

Lvec
IM = P̄αeαβPβ + P̄α(Nα + ∂�̃α) + (N̄α − ∂̄�̃α)Pα + L′(Xm) (5.47)

and next we can take the Gaussian integral in P̄a and Pα in the corresponding path integral.
Therefore, the effective action for the T-dual model has the form

Lvec
IM (�̃α,Xm) = −(N̄α − ∂̄�̃α) e−1

αβ (Nβ + ∂�̃β) + L′(Xm) − 4π(α′)2 ln(det eαβ)R(2) (5.48)

in accordance with equations (5.41).
The second question to be addressed is whether the Lagrangians (5.44) and (5.48) are

related by canonical transformations (5.40). In order to answer it, we shall compare their
Hamiltonians:

Hax = �̇α��α
+ Ẋm�Xm

− Lax Hvec = ˙̃�α��̃α
+ Ẋm�Xm

− Lvec
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since by definition

��α
= δLax

δ�̇α

= 2�̇βeαβ + Nα + N̄α ��̃α
= δLvec

δ ˙̃�α

= e−1
αβ (2 ˙̃�β + Nβ − N̄β) (5.49)

we find that

Hax = 1
4��α

e−1
αβ ��β

− 1
2��α

e−1
αβ (Nβ + N̄β) + ∂x�αeαβ∂x�β + ∂x�α(Nα − N̄α)

+ 1
4 (Ni + N̄ i)e

−1
ij (Nj + N̄j ) + H

(
Xm,�Xm

)
(5.50)

and

Hvec = 1
4��̃α

eαβ��̃β
− 1

2��̃α
(Nα − N̄α) + ∂x�̃αe−1

αβ ∂x�̃β + ∂x�̃αe−1
αβ (Nβ + N̄β)

+ 1
4 (Ni + N̄ i)e

−1
ij (Nj + N̄j ) + H

(
Xm,�Xm

)
(5.51)

where H
(
Xm,�Xm

) = Ẋm�Xm
− L′(Xm). Finally we observe that Hax = Hvec, i.e.

integrable models (5.44) and (5.48) have coinciding Hamiltonians if the transformation

��α
= −2∂x�̃α ��̃α

= −2∂x�α (5.52)

takes place. This is precisely the canonical transformation (5.40) relating the T-dual pairs of
σ -models.

5.2. Axial–vector duality for homogeneous grading models

In order to prove that the axial (3.24) and vector (3.30) IMs are T-dual to each other, we apply
the procedure explained in section 5.1. Starting from equation (3.24) we recognize the two
isometric ‘coordinates’ to be �α = ln

(
ψα

χα

)
, α = 1, 2. By changing variables

ψα, χα → �α am = ψmχm m = 1, 2

one can rewrite Lax in (3.24) in the form (5.45) with

L′(Xm) = ∂̄a1∂a1

4�a1
(1 + a2) +

∂̄a2∂a2

4�a2
(1 + a1 + a2) − ∂̄a1∂a2

8�
− ∂̄a2∂a1

8�
− µ2

(
2

3
+ a1 + a2

)
and

e11 = − 1

4�
(1 + a2)a1 e22 = − 1

4�
(1 + a1 + a2)a2 e12 = e21 = 1

8�
a1a2

N1 = 1

4�

(
(1 + a2)∂a1 − 1

2
a1∂a2

)
N2 = 1

4�

(
(1 + a1 + a2)∂a2 − 1

2
a2∂a1

)

N̄1 = 1

4�

(
−(1 + a2)∂̄a1 +

1

2
a1∂̄a2

)
N̄2 = − 1

4�

(
(1 + a1 + a2)∂̄a2 − 1

2
a2∂̄a1

)
.

(5.53)

Therefore, according to equations (5.46) and (5.47) the axial and vector IMs are related by
canonical transformation (5.52). The identification of Lvec

IM in (5.48) with the vector model
Lagrangian (3.30) becomes evident by observing the relations among the fields,

a1 = −t2
1 eφ1+φ2 a2 = −t2

2 e−φ1+2φ2 �̃1 = − 1
2φ1 �̃2 = − 1

2 (φ2 − φ1). (5.54)

Another important feature of the axial–vector T-duality is the simple relation between the
isometric fields �̃α of the vector model (3.30) and the non-local fields Ri (see (4.33)) of the
axial model,

R1 = 2(�̃2 − �̃1) R2 = −2(�̃1 + 2�̃2). (5.55)
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The above identification can be established by solving the constraints (2.10) (or in the explicit
form (4.33) for the SL(3) case) in favour of the non-local fields of the vector model �i :

∂�1 = ∂ ln a1 − ∂(R1 + R2) − 2

3

a2 + 1

a1
∂(2R1 + R2)

∂�2 = ∂ ln a2 +
2

3

a2 + 1

a2
∂(R1 − R2) − 1

3
∂(2R1 + R2)

∂̄�1 = −∂̄ ln a1 + ∂̄(R1 + R2) +
2

3

a2 + 1

a1
∂̄(2R1 + R2)

∂̄�2 = −∂̄ ln a2 − 2

3

a2 + 1

a2
∂̄(R1 − R2) +

1

3
∂̄(2R1 + R2)

(5.56)

and next comparing the RHS of equation (5.56) with the U(1) ⊗ U(1) conserved currents of
the vector model Lagrangian (3.30). We can further write equations (5.56) and (4.33) in the
compact form

J
i,ax
top = εµν∂

ν�i = J̃ i,vec
µ J̃

i,vec
top = εµν∂

νRi = J i,ax
µ (5.57)

or equivalently

Ĩ
1,vec
top = εµν∂

ν�̃1 = − 1
6

(
J 2,ax

µ + 2J 1,ax
µ

)
Ĩ

2,vec
top = εµν∂

ν�̃2 = 1
6

(
J 1,ax

µ − J 2,ax
µ

)
. (5.58)

For the SL(3)-case in consideration these equations exemplify the main property (5.43) of the
T-dual pairs of models

Q
α,ax
top = Qα,vec Q

α,vec
top = Qα,ax (5.59)

namely that T-duality relates the topological charges Q
α,vec
top = ∫

dx∂x�̃α to the U(1) ⊗ U(1)-
charges Qα,ax of the axial IM and vice versa.

An explicit realization of the above exchange of topological and U(1)-Noether charges
(similar to the momentum-winding numbers exchange in string theory) has been observed in
[7], analysing the 1-soliton structure spectrum of the corresponding dyonic IM. The masses
of the solitons of axial and vector models remain equal, but the U(1) charge of the axial non-
topological solitons is transformed into the topological charge of the vector model solitons.
Similar relations take place in the pair of T-dual non-Abelian dyonic models (3.24) and (3.30)
in consideration [19].

6. Conclusions

We have demonstrated how one can extend the Abelian T-duality of the conformal gauged
G/H -WZW models to their integrable perturbations, which appears to be identical to specific
homogeneous gradation NA affine Toda models. More general considerations (presented
in section 5) of generic (relativistic) IMs (as well as for non-integrable models) admitting
isometric directions (i.e. with few global U(1) symmetries) make it evident that one can
construct their T-dual partners by appropriately chosen canonical transformations. The most
important new feature of the T-duality in the context of 2D integrable models consists in its
action on the spectrum of the solitons of the corresponding pair of dual IMs. As one can
expect it maps the U(1)⊗d -charges of the solitons of the axial model (with d-isometries) to
the topological charges of the solitons of its T-dual counterpart, leaving the soliton masses
unchanged.

The quantization of the NA affine Toda models usually requires non-trivial counterterms
[7, 10, 21] together with the renormalization of the couplings and masses. Hence, an interesting
open problem is whether the quantum vector and axial IMs continue to be T-dual to each other.



4640 J F Gomes et al

Acknowledgments

One of us (JFG) thanks O Babelon for discussions and LPTHE for the hospitality. We are
grateful to CNPq, FAPESP, UNESP and CAPES/COFECUB for financial support.

References

[1] Alvarez E, Alvarez-Gaume L and Lozano Y 1995 Nucl. Phys. Proc. Suppl. 41 1
Alvarez E, Alvarez-Gaume L, Barbon J L F and Lozano Y 1994 Nucl. Phys. B 415 71

[2] Giveon A, Porrati M and Rabinovici E 1994 Phys. Rep. 244 77
[3] Kiritsis E 1991 Mod. Phys. Lett. A 6 2871
[4] Tseytlin A 1993 Nucl. Phys. B 399 601

Tseytlin A 1994 Nucl. Phys. B 411 509
Tseytlin A 1995 Class. Quantum Grav. 12 2365

[5] Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2002 J. High Energy Phys. JHEP07(2002)001
(Preprint hep-th/0205228)

[6] Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2001 Ann. Phys., NY 289 232 (Preprint
hep-th/0007116)

[7] Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2001 Nucl. Phys. B 606 441 (Preprint
hep-th/0007169)

[8] Cabrera-Carnero I, Gomes J F, Sotkov G M and Zimerman A H 2002 Nucl. Phys. B 634 433 (Preprint hep-
th/0201047)

[9] Gomes J F, Sotkov G M and Zimerman A H 2002 Proc. Workshop on Integrable Theories, Solitons and Duality
ed L A Ferreira, J F Gomes and A H Zimerman J. High Energy Phys. PRHEP-unesp2002/045 (Preprint
hep-th/0212046)

[10] Fateev V A 1996 Nucl. Phys. B 479 594
[11] Fordy A and Kulish P 1983 Commun. Math. Phys. 89 427
[12] Aratyn H, Gomes J F and Zimerman A H 1995 J. Math. Phys. 36 3419
[13] Fernandez-Pousa C R, Gallas M V, Hollowood T J and Miramontes J L 1997 Nucl. Phys. B 484 609

Fernandez-Pousa C R, Gallas M V, Hollowood T J and Miramontes J L 1997 Nucl. Phys. B 499 673
[14] Aratyn H, Ferreira L A, Gomes J F and Zimerman A H 1991 Phys. Lett. B 254 372
[15] Gomes J F, Gueuvoghlanian E P, Sotkov G M and Zimerman A H 2001 Nucl. Phys. B 598 615 (Preprint

hep-th/0011187)
[16] Leznov A N and Saveliev M V 1992 Group theoretical methods for integration of nonlinear dynamical systems

Progress in Physics vol 15 (Berlin: Birkhauser)
[17] Olive D I, Turok N and Underwood J W R 1993 Nucl. Phys. B 401 663
[18] Lund F and Regge T 1976 Phys. Rev. D 14 1524
[19] Cabrera-Carnero I, Gomes J F, Sotkov G M and Zimerman A H 2004 Vertex operators and solitons solutions of

affine Toda model with U(2) symmetry Preprint hep-th/0403042
Also in Gomes J F, Sotkov G M and Zimerman A H 2004 Solitons with isospin at press

[20] Buscher T 1985 Phys. Lett. B 159 127
Buscher T 1987 Phys. Lett. B 194 59
Buscher T 1988 Phys. Lett. B 201 466

[21] de Vega H J and Maillet J M 1983 Phys. Rev. D 28 1441


